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The flows caused by a uniformly expanding circular cylinder or sphere in a perfect 
gas a t  rest a t  various (from small to very large) expansion velocities are analysed 
by a method of successive approximations in which the first approximation 
represents the incompressible flow. The shock waves which form around the 
bodies are also treated. The results for a sphere, even up to the third approxima- 
tion, agree closely with Taylor’s (1946) calculations for all the expansion 
rates. 

1. Introduction 
Similarity flows of a perfect gas are of practical importance in applications to 

steady supersonic or hypersonic flows around slender bodies and. many such 
investigations have been performed. In  particular, the flows around pointed 
conical bodies, i.e. conical flows, which are analogous to two-dimensional piston 
problems, have been studied analytically and numerically. While, for the piston 
problem, Taylor (1946) solved the flow around a uniformly expanding sphere, 
Sedov (1959) obtained the general solutions for a sphere and a circular cylinder 
numerically. 

In  this paper the similarity flows caused by a uniformly expanding circular 
cylinder and sphere are studied by a method of successive approximations in 
which the first approximation gives the incompressible flow. Among such approx- 
imations is the Rayleigh-Janzen (RJ) method, sometimes called the M2-expan- 
sion method, for dealing with steady flows of a compressible fluid when the flow 
field is irrotational and the maximum local Mach number is smaller than unity. 
An outline of this method and references are presented in Howarth (1953), Van 
Dyke (1964) and Imai (1957). Also, the accuracy of this method was investigated 
recently by Sakurai (1975). 

The method applied here is similar to the R J  method. The fluid velocity is 
expanded in powers of E ,  the ratio of the kinetic energy to the total energy of the 
fluid on the body surface; higher approximations are obtained by solving a set of 
ordinary differential equations with boundary conditions on the body surface. 
The results for a sphere up to the third approxima,tion agree closely with Taylor’s 
results. 

40 FLM.79  



626 T .  Kimura and M .  Tsutahara 

2. Analysis 
The equations of continuity and motion in polar co-ordinates are 

where the parameterj = 0, 1 and 2 for one-, two- and three-dimensional flows, 
i.e. flows caused by a plane piston, a circular cylinder and a sphere respectively. 
In  these equations, the starting point of the plane piston and the centres of the 
circular cylinder and sphere are a t  the origin. Since the flows are similarity ones, 
if we introduce a non-dimensional variable 

where ug is the velocity of the plane piston or the expansion velocity of the circu- 
lar cylinder or sphere, the fluid velocity v, the density p and the pressure p are 
functions of r* only. I n  other words, these quantities have the same values a t  
points with the same value of r* at different instants. In  terms of r*, (1) and (2) 
may be written respectively as 

(u r*-v)-- 1 clp =-+- dv jv 

dp - (upr*-u)-. 

par* dr* r*' P 

dv 
pdr" - dr* 

(4) 

If we assume that the flows are isentropic, p and I, can be eliminated from (4) and 
(5) using the sound speed a = (dp[dp)t to give 

-+- dv j v  =-(u 1 r * - v ) 2 -  dv 
dr* r* a2 dr*' 

Integrating ( 5 )  with respect to r* from the body surface to an arbitrary point 
vields 

where aP denotes the sound speed of the fluid on the body surface, y is the ratio 
of specific heats and C is a constant with the dimensions of velocity. Eliminating 
a2 from (6) and (2) and introducing a non-dimensional variable 

8 = u ; p ,  
we get 

Here the variable e is always smaller than unity. 
Then we assume that the fluid velocity can be expanded in the form 

v = V,+EV1+€2V2 + ..., 
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where v, denotes the fluid velocity in the case of incompressible fluid, because the 
condition of incompressibility corresponds to a+ co, i.e. C-+ co, and consequently 
the condition that € 3 0 .  Substituting (10) into (9) and equating terms of the 
same order in E we get a set of linear first-order ordinary differential equations: 

dvo jvo -+- = 0, 
dr* r* 

etc. The first term v, of (10) is determined by solving (1  1 a )  under the condition 
that v, = up on the body surface, i.e. at  r* = I ;  we obtain 

v, = up/r*i, j = 0,1 ,2 .  (12) 

This shows that in the case of one-dimensional flow v, is constant, equal to the 
piston velocity, and that in two- and three-dimensional flow it gives the velocity 
field due to the corresponding point sources. The higher terms v,, v2, . . . , can be 
obtained by solving the above equations successively under the condition that 
vl, v2, . . . = 0 at r* = 1. We find 

v1 = v2 = ... 2 0 (13a) 

for one-dimensional flow, 

\ 

2 2  5 20 log r * 
6r * + - + - - - + 4r* log r * + r* y*3 2r*5 

16 (logr*f2 
r* 

2logr* 21ogr" 4(1ogr*j2 
+%*logr*+ - - ~ - 

r* 

for two-dimensional flow and 

I 

for three-dimensional flow. 
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It follows from these results that the fluid velocity for one-dimensional flow is 
equal to up independently of the value of e. This corresponds the well-known flow 
in which a shock wave exists in front of the piston and the fluid ahead of the shock 
wave is at rest. We do not treat this flow further in this paper. For two- and three- 
dimensional flow, both v1 and v2 are negative monotonic-decreasing functions of 
r * ,  and when r* 3 0 0 ,  v1 and v2 tend to - co for two-dimensional flow and asympto- 
tically approach finite negative values for three-dimensional flow. The same 
tendency is expected for the other higher terms v3, v4, . . . , Since the lowest-order 
fluid velocity vo approaches zero asymptotically as r*+oo, we find that the 
resultant fluid velocity v decreases monotonically to a negative value as r* 
increases when e is not zero. 

However, since a shock wave is formed around an expanding body with ;I 
finite velocity, the shock wave can be considered to appear before v falls below 
zero. The position r,* of the shock wave may be found from a geometrical condition 
(the ratio of the velocities of the shock wave and the body is the same as that of 
their radii) and the normal shock condition, i.e. r,* can be obtained by eliminating 
Ms from the two equations 

M, = up/arn r,* 9 

vs/am = 2(M,2 - l ) / (y  + 1) M,. 

(14) 

(15) 

Here M, ( > 1) denotes the shock Mach number, the ratio of the shock velocity to 
the sound speed urn in the undisturbed region, and vs denotes the fluid velocity 
just behind the shock wave. 

3. Calculation and results 
Since the quantity C in (7) is constant throughout the area between the shock 

wave and the body, it can be obtained from the condition just behind the shock 
wave : 

Here the sound speed in the fluid just behind the shock wave is related to that 
in the undisturbed region by the following relation for a normal shock wave: 

In  order to determine v, in (16) ,  however, the value of E, i.e. C, must be known 
beforehand, as is obvious from (10). Conversely, in order to obtain the constant 
C ,  it is necessary to know the position of the shock wave, and consequently the 
value of v,. These cannot be obtained by solving the equations. Therefore we first 
find a velocity distribution from (10) by taking an arbitrary value of E and deter- 
mine the corresponding position of the shock wave; then, using (16)  and (17), we 
calculate the constant C, from which we get another value of E and again 
substitute it into (10). This process is repeated until the calculated values 
converge. 
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FIGURE 1. Pressure distributions. - - -, circular cylinder; , sphere. 

The pressure distribution is obtained from the distribution of sound speed, 
which is given by (7), through the isentropic relation 

where the suffix p refers to the value on the body surface. The pressure distribu- 
tions for a circular cylinder and a sphere are shown in figure 1. 

A comparison between the present results (y  is taken as 1.405 for this compari- 
son) and those of Taylor for the position of the shock wave and the pressure for a 
sphere is given in table 1. The values of E are also presented for interest. This 
shows that the present results agree with Taylor’s; in particular when the expan- 
sion rate is very large (upla, > 100) the shock position r,* and the ratio p J p p  
found by our method are almost constant, 1.062 and 0.937, respectively, com- 
pared with Taylor’s results 1.060 and 0.93 for upla, +a. We consider that the 
error due to neglecting terms higher than v2, which is O(e3) in the present approxi- 
mation, becomes significant as r* increases because (v, 1, (v4 1, . . . increase mono- 
tonically with r * ;  however when e is large, i.e. when uplam is rather large, r,* is 
small because the shock wave approaches the body. Consequently the error is 
expected to be small for all cases. 
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Position of 
shock wave, r: Pressure, p J p ,  

u,laal 
0-203 
0.523 
1.180 
3.598 

10.0 
100.0 

1000-0 
03 

€ 

0.00811 
0.04773 
0.16793 
0.39398 
0.46059 
0.47244 
0.47244 

Present 
analysis 

4.928 
1.992 
1.363 
1.085 
1.065 
1.062 
1.062 

Taylor 
4.93 
1.950 
1.256 
1.083 

- 
1.060 

Present 
analysis 

0.934 
0,785 
0.815 
0.917 
0.934 
0.937 
0.937 

Taylor 
0.928 
0.750 
0.811 
0.92 

- 
0.93 

T ~ B L E  1. Comparison with Taylor's results on shock position and pressure for a sphere. 
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